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ABSTRACT

This thesis studies the diameter of the Special Linear and Symplectic groups

over finite fields with prime order.

We shall establish two bounds on its diameter of SLn(p) with respect to

a small, well known generating set. This partially solves a problem by

Lubotzky. Then we use one of these bounds to establish an upper bound

on the mixing time of the Special Linear Group given by the uniform ran-

dom walk on this generating set with the identity.

Finally, we establish similar bounds for Sp2n(p).
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1. INTRODUCTION AND STATEMENT OF RESULTS

1.1 Group Diameters

Let G be a finite group with a symmetric generating set S (note that a

generating set is said to be symmetric if s ∈ S ⇒ s−1 ∈ S). Each element of

G can be written as a product of a finite number of elements of S. We define

the length of g with respect to S, denoted lS(g), to be the smallest positive

number k such that g = s1s2...sk with the si ∈ S.

Let H be any subgroup of G. Then the diameter of H with respect to S,

denoted lS(H) is defined as follows.

lS(H) = max{lS(h) : h ∈ H}

We may also define the diameter of G with respect to a given generating set

in terms of an associated graph.
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A graph Γ(V,E) is a set of vertices, V, with an associated set of edges, E,

where E is a subset of V × V. If there is an edge between two vertices of

a graph, the vertices are said to be adjacent. We denote an edge between

vertices v1 and v2 as (v1, v2) ∈ E.

Given two vertices va, vb ∈ V, we say there is a path of length k between va and

vb if there are vertices v1, v2, ...vk−1 ∈ V such that (va, v1), (v1, v2), ...(vk−1, vb) ∈
E. The distance between va and vb, denoted d(va, vb), is the smallest number

k such that there exists a path of length k between va and vb.

We define the diameter of a graph Γ(V, E) to be the largest number m such

that there exist vertices va and vb with d(va, vb) = m.

Given a group G and a symmetric generating set, S, we may define an as-

sociated graph X(G,S), called the Cayley Graph of G with respect to S, as

follows. We set the vertex set of X(G,S) to be the set of elements in G and

we define the edge set by setting (gi, gj) ∈ E if and only if gi = sgj for some

s ∈ S.

Note that the diameter of the Cayley graph X(G,S) is the same as lS(G).

Lemma 1.1.1: Let G be a group with a generating set S. Then we have

lS(G) ≥ log |G|
log |S| − 1.

Proof.
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For ease of notation I will use d = lS(G).

Note that each element of G can be written as the product of at most d

elements of S. So for each g ∈ G we have g = s1s2s3....sk where each si ∈ S

and 0 ≤ k ≤ d. There are at most |S|k expressions of this form. This gives

us that

|G| ≤
d∑

k=0

|S|k

=
|S|d+1 − 1

|S| − 1

≤ |S|d+1

Taking logs we now have

log |G| ≤ (d + 1) log |S|

and so d ≥ log |G|
log |S| − 1.

In [1], Babai, Lubotzky and Kantor show that, if G is a simple group, then

there exists a generating set S of G such that |S| ≤ 7 and lS(G) < m log |G|.



1. Introduction and Statement of Results 4

Here m is a constant that is approximately 1010. However the SG are compli-

cated and difficult to construct. There are several open questions surrounding

the diameters of groups with respect to more natural generating sets.

In [8] (problem 8.13), Lubotzky conjectured that, if G = SLn(p), there is a

natural generating set, S, such that lS(G) is of order log |G|. More precisely,

there exists a constant C such that

lS(G) ≤ C log |G|.

Since log |G| is roughly n2 log p, Lubotzky’s conjecture would mean that lS(G)

would be Cn2 log p for some constant C. By 1.1.1, if |S| is bounded, this

bound is tight up to the constant.

The generating set in Lubotzky’s conjecture is defined as follows. Let the

standard basis of (Fp)
n be denoted by e1, e2, ...en. Define y to be the matrix

in G that sends ei to ei+1 for i = 1, 2, 3, ...n − 1 and sends en to (−1)n+1e1.

That is

y =




(−1)n+1

1

1

. . .

1




.
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Define x to be the transvection 1 + e1,2, i.e

x =




1 1

1

. . .

1




.

We define S to be the set {x±1, y±1}.

In Chapter 3 we take Lubotzky’s suggested generating set, S, and prove the

following diameter results, which go some way towards proving Lubotzky’s

conjecture.

Theorem 1.1.2: The diameter of SLn(p) with respect to S is at most 50n2p.

Theorem 1.1.3: There exists a constant K, which is not dependent on n and

p, such that the diameter of SLn(p) with respect to S is at most Kn3 log p.

Remark 1.1.4: We may bound K above very crudely by 36500.

In chapter 5 we generalize this to the Symplectic Groups, Sp2n(p), over fields

with prime order. We construct a generating set, S ′ as follows.
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Using the same notation as in our definition of S, define v to be the matrix




x 0

0 x−TJ




and w to be the product




−1

1

. . .

. . .

1

1










1

1

. . .

1


 0

0




1

1

. . .

1




−TJ




where M−TJ is the matrix obtained by taking the inverse of the transpose

of a matrix M, and conjugating by a fixed matrix J which will be described

later. Define S ′ to be the set {v±1, w±1}.

Note that we have chosen this generating set because, as in the case of

our generating set of SLn(p), this set contains a short root element and

an element of the Weyl Group of Sp2n(p).
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We have the following two Theorems about the diameter of Sp2n(p) with

respect to S ′.

Theorem 1.1.5: Let p be an odd prime. Then the diameter of Sp2n(p) with

respect to S ′ is at most 187n2p.

Theorem 1.1.6: Let p be an odd prime. Then the diameter of Sp2n(p) with

respect to S ′ is at most Kn3 log p, where K is a constant that is not dependent

on n and p.

Lubotzky’s conjecture for SLn(p) was recently shown to be true in the paper

by Kassabov and Riley, [7]. This used a different, less elementary method

than mine to prove the result. My bound is better for small values of p.

My results about the diameter of Sp2n(p) are completely new and have been

published in [10].

1.2 Random Walks on Groups

Let G be a finite group with generating set S = {s1, s2, ...sk}. Let P be a

probability measure on G, so P (g) ≥ 0 for each g ∈ G and
∑

g∈G P (g) = 1.

Consider the process where at each step we choose an element of G with

probability given by P and study the evolution of the product of all the
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chosen elements. This process is called the random walk on G generated by

the probability measure P .

For example, a random walk can be used to model the following scenario.

Suppose there are n cards labeled 1 to n from left to right. A process is

carried out where, at each stage, one card is chosen at random, and then

another, with repetition allowed. The two cards are interchanged or, if the

same card was chosen both times, the cards are left alone.

We are interested in the order of the cards after k steps of this process have

been carried out.

This can be modeled as follows. The order of the cards can be thought

of as an element of Sn. For example, if the only first two cards have been

interchanged, we can view the new order of the cards as the permutation

(1, 2) ∈ Sn.

At each step a permutation, is chosen using the probability measure P where

P (g) =





2
n2 if g is a transposition

1
n

if g is the identity

0 otherwise.

This permutation is applied to the cards. The order of the cards after k steps
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of this process is the product of the k permutations that have been chosen.

If, after k steps of a random walk, the product of all the chosen elements is g,

we say that the random walk is at g after k steps. We define P ∗k : G → [0, 1]

by setting P ∗k(g) to be the probability the walk generated by P is at g after

k steps.

We are usually interested in how large k has to be before the element pro-

duced by k steps of the walk is ’random.’ By this we mean that P ∗k is very

similar to the uniform probability distribution on G.

In order to formalize this concept we need to introduce the notion of a metric

on probability measures.

Definition 1.2.1: Suppose Q and R are probability measures on G. Then the

total variation distance between Q and R is ‖Q−R‖ where

‖Q−R‖ =
1

|2|
∑
g∈G

|Q(g)−R(g)|.

To proceed, we will need to know when the probability distribution cor-

responding to a random walk converges to the uniform distribution. The

following section will show that convergence depends only on the elements

of G for which P (g) 6= 0.
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1.3 Convergence of Random Walks

Throughout this section, G will be a finite group with a symmetric generating

set S. We will study the random walk given by a probability distribution P,

where P (g) = [
1
]|S| if and only if g ∈ S.

The following well known Theorem gives us a condition which guarantees

that P ∗k will converge to the uniform distribution, U on G.

Theorem 1.3.1: Let G, S and P be as described above. Then P ∗k will con-

verge to the uniform distribution on G as k tends to infinity if and only if S

is not contained in a coset of a proper normal subgroup of G of index 2. It

is not easy to find a published proof of this result so I provide one here.

We will need to make a few definitions before we prove 1.3.1.

Definition 1.3.2: Let Γ be a graph with vertex set V . Then Γ is bipartite if

there exist two disjoint, non-empty subsets of the vertex set, V1 and V2, with

V1 ∪ V2 = V so that no two vertices in V1 are adjacent and no two vertices

in V2 are adjacent.

We may label the elements of G as g1, g2, ..., gn. Now we can define a |G|×|G|
matrix, A = (ai,j) as follows. The entry ai,j of A is 1 if gi = sgj for some
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s ∈ S and zero otherwise. We call A the adjacency matrix of G with respect

to S. Note that A is also the adjacency matrix of the Cayley graph Γ(G,S).

Suppose now that P is a probability distribution as described in 1.3.1. We

may define a |G|- dimensional vector, pk, as pk = (P ∗k(g1), P
∗k(g2), ...P

∗k(gn))T .

The is called the probability vector of P ∗k.

Note that ai,j = 1 if and only if gig
−1
j ∈ S. So ai,j = 1 if and only if

P (gig
−1
j ) = 1

m
, where m = |S|, and hence 1

m
ai,j = P (gig

−1
j ).

Now

P ∗k(gj) =
n∑

i=1

P (gjg
−1
i )P ∗k−1(gi)

n∑
i=1

1

m
aj,iP

∗k−1(gi).

So we have 


P ∗k(g1)

P ∗k(g2)

...

...

P ∗k(gn)




=
1

m




∑n
i=1 a1,iP

∗k−1(gi)
∑n

i=1 a2,iP
∗k−1(gi)

...

...
∑n

i=1 an,iP
∗k−1(gi)




=
1

m
Apk−1.

To prove 1.3.1 we will need the following well-known, elementary Lemma,
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which I shall state without proof.

Lemma 1.3.3: Let Γ be a regular connected graph with valency m and adja-

cency matrix, A. Then

1) m is an eigenvalue of A with multiplicity 1. The eigenspace of m is

generated by (1, 1, ..., 1).

2) if λ is any eigenvalue of A, then |λ| ≤ m.

3) −m is an eigenvalue of A if and only if Γ is bipartite.

Theorem 1.3.4: Let G, S and P be as described at the beginning of this

section. If the Cayley Graph of G with respect to S is not bipartite, we have

that ‖P ∗k − U‖ → 0 as k tends to infinity.

Proof. Let A be the adjacency matrix of G with respect to S. Define M to

be the matrix 1
m

A, where m = |S|. Since S is symmetric, M is symmetric so

M = TDT−1 for some matrix T and some diagonal matrix D. Suppose

D =




λ1

λ2

. . .

λn−1

λn
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The λi are the eigenvalues of M . From 1.3.3 part 1), We know that precisely

one of these is 1. By part 2), we know that for any other eigenvalue, λ, we

have |λ| ≤ 1. Since the Cayley graph of G with respect to S is bipartite, we

know that −1 is not an eigenvalue of M .

So, we may assume that λ1 = 1 and for i > 1, |λi| < 1. Now,

Mkp = TDkT−1p

tends to

T




1

0

. . .

0

0




T−1p

as k tends to infinity. Define this limit as v.

Now Mk+1p also tends to v and so Mv = v. From 1.3.3 part 1) we know that

v = λ(1, 1, ....1)T . Also, since v is a probability vector we have λ = 1
n

and v

represents the uniform probability distribution on G.

Lemma 1.3.5: If the Cayley graph X(G,S) is bipartite, then S is contained
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in a coset of a normal subgroup of G with index 2.

Proof. Since X(G,S) is bipartite we may divide the vertex set, V , into two

disjoint, non-empty sets V1 and V2.

Without loss of generality, we’ll say that the vertex corresponding to the

identity lies in V1. Then, since there is an edge between the vertex corre-

sponding to the identity and each vertex corresponding to elements of S, each

element of S must lie in V2. Repeating this argument, we see that, if lS(g)

is odd, the vertex corresponding to g must lie in V2 and, if lS(g) is even, it

must lie in V1. Hence the elements of g whose vertices lie in V1 form a group.

This group is of index 2 and hence is normal. So, the elements of S lie in the

coset of a normal subgroup of index 2.

Proof. (of 1.3.1) Suppose S is a symmetric generating set of G which is not

contained in a coset of a normal subgroup of G. Then from 1.3.5 we see that

the Cayley graph X(G,S) is not bipartite and so by 1.3.3 P ∗k tends to the

uniform distribution as k tends to infinity.

Conversely, if S is contained in the coset of any normal subgroup, say Ng,

where N is the normal subgroup and g is a coset representative, then the

support of P ∗k will be contained within Ngk. Hence P ∗k is always zero on all

but |N | elements of G and cannot tend to the uniform distribution on G.
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1.4 Mixing Times

Definition 1.4.1: The mixing time of G with respect to the random walk

generated by P is the smallest number, k, such that ‖P ∗k − U‖ < (2e)−1.

The reason we choose (2e)−1 is that, if ‖P ∗k − U‖ < (2e)−1, then we can

guarantee that ‖P ∗mk − U‖ decays exponentially as m increases linearly.

Many of the original problems on mixing times of finite groups were answered

by Persi Diaconis. Several problems were posed to answer the question of

how long it takes to shuffle a pack of n cards. The example given above

illustrates the model used to answer this question when the pack of cards is

shuffled by repeatedly interchanging two cards.

The mixing time of this ’Random Transposition’ walk was determined by

Diaconis and Shashahani in [5]. The method, which will be discussed in

more detail in Chapter 2, relied on the fact that the probability measure, P ,

is constant on conjugacy classes.

In situations where the probability measure is not a class function, other

methods are needed to determine mixing times. A technique known as ’Com-

parison’ is used. As the name suggests, comparison involves comparing some

properties of the random walk being studied with those of another walk

which has already been studied. In order to use comparison techniques we
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will need to know an upper bound for the diameter of the group in ques-

tion. The techniques and results of Comparison will be discussed further in

Chapter 2.

We shall be studying a random walk generated by the uniform probability

on a small generating set. The generating set is not a union of conjugacy

classes and so we will need to use comparison techniques to work out its

mixing time.

In Chapter 4 we use comparison with the uniform random walk on the set of

transvections to determine a bound for the mixing time of SLn(p) given by

the following probability distribution, where x and y are as defined in section

1.1.

Q(g) =





1
5

g = x, y, x−1, y−1 or I

0 otherwise.

We shall show

Theorem 1.4.2: The mixing time of SLn(p) given by the probability distri-

bution Q is of order at most n6(log p)3.

In Chapters 6 we shall solve a similar problem for the Symplectic Group,
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Sp2n(p). We use the probability distribution,

Q(g) =





1
5

g = v, w, v−1, w−1 or I

0 otherwise.





where v and w are as defined in section 1.1.

Theorem 1.4.3: The mixing time of Sp2n(p) given by the probability measure

Q described above is of order at most n8(log p)3.



2. PRELIMINARIES

2.1 Classical Groups

Let p be a prime and define Fp to be the finite field with p elements. We use

V to denote the vector space of dimension n over Fp. Let F∗p denote Fp\{0}.

We define the general linear group, GLn(p), to be the group of n×n matrices

with entries in Fp that have non-zero determinant.

Note that the diagonal matrices in GLn(p) form a subgroup which is isomor-

phic to (F∗p)n.

The special linear group, SLn(p), is the subgroup of GLn(p) which consists

of all the matrices with determinant 1.

The classical groups are subgroups of GLn(p) and SLn(p) that stabilise cer-

tain forms on V . We shall only need to deal with the Symplectic Group

which is defined as follows.
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If the dimension of V is 2n, there exists a skew-symmetric, non-degenerate,

bilinear form on V. This is known as a symplectic form. Given a symplectic

form (.), on V, there exists a basis, e1, e2, ..., en, f1, f2, ..., fn with the following

properties. For all i, j ∈ {1, 2, ..., n} we have

(ei.ej) = (fi.fj) = 0

and

(ei.fj) = δi,j = −(fj.ei).

We define the symplectic group, denoted Sp2n(p), to be the subgroup of

SL2n(p) that preserves this symplectic bilinear form.

Now we discuss the structure of SLn(p). Fix a basis, e1, e2, ...en of V and

define B to be the stabiliser in SLn(p) of {〈e1, ...ei〉 : i = 1, 2, ...n − 1.}
Then B is the group of upper triangular matrices in SLn(p). Define N to

be the stabiliser of {〈e1〉, 〈e2〉, ...〈en〉}. Then N is the group of matrices with

precisely one non-zero entry in each row and column and is known as the

group of monomials.

The Weyl Group of SLn(p) is the quotient N
B∩N

. The following important

result about the structure of SLn(p) has been taken from [2] (Theorem 8.2.2).

Theorem 2.1.1: Using the notation described above we have SLn(p) = BNB.
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We may also define subgroups B and N for Sp2n(p). In this case we let

e1, e2, e3, ...en, f1, f2, ...fn be a basis as descibed above and define B as the

stabiliser of

{〈e1, ...ei〉 : i = 1, 2, ...n}

.If we order the standard symplectic basis e1, e2, ...en, fn, fn−1, ..., f1 then B

is the subgroup of upper triangular matrices in Sp2n(p). The subgroup N

is defined as the stabiliser of {〈e1〉, 〈e2〉, ...〈en〉, 〈f1〉, 〈f2〉, ...〈fn〉} in Sp2n(p).

Again, N is just the subgroup of monomials in Sp2n(p).

In the case of Sp2n(p), the Weyl Group is isomorphic to the semi-direct

product 2n.Sn. The subgroup 2n is the normal subgroup generated by the set

of matrices {ti|i = 1, 2, ..., n} where ti sends ei to fi and fi to −ei.

Again [2] provides us with the following result about the structure of Sp2n(p).

Theorem 2.1.2: Using the notation described above we have Sp2n(p) = BNB.

Note that in general each classical group can be written as a product of

subgroups BNB. This is proved in [2].

For any matrix M denote MR to be the matrix obtained by reversing the

order of the columns of M. Now define J to be the matrix IR.
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Remark 2.1.3: A matrix M lies in Sp2n(p) if and only if

M




0 J

−J 0


 MT =




0 J

−J 0


 .

This follows immediately from the definition of the symplectic form.

For ease of notation, given any matrix, M, I will denote (M−1)T by M−T

and J−1(M−1)T J by M−TJ .

We will use the following property of Sp2n(p) several times in Chapter 5.

Lemma 2.1.4: Let A and C be matrices in GLn(p). Then the 2n× 2n matrix




A B

0 C


 ,

where B is an n × n matrix, lies in Sp2n(p) if and only if C = A−TJ , and

AJBT = BJAT .

Proof.

From the above remark we know that
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A B

0 C




is in Sp2n(p) if and only if




AT 0

BT CT


 =




0 J

−J 0




−1 


A B

0 C




−1 


0 J

−J 0




so




A B

0 C







0 J

−J 0







AT 0

BT CT


 =




0 J

−J 0




and hence



−BJAT + AJBT AJCT

−CJAT 0


 =




0 J

−J 0


 .

Now, looking at the bottom left hand quadrants of the matrices in the last

equation we have −CJAT = −J so C = JA−T J−1 = A−TJ . Equating the

top left hand quadrants we have AJBT = BJAT .
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Corollary 2.1.5: Suppose M is a matrix in GLn(p). Then the map φ : SLn(p) →
Sp2n(p) given by

φ(M) =




M 0

0 M−TJ




is an embedding.

The transvections in SLn(p) are mapped by φ to the short root elements of

Sp2n(p).

2.2 Two Useful Diameter Results

The following result about the diameter of SL2(p) from [1] will be needed to

prove Theorems 1.1.3 and 1.1.6.

Theorem 2.2.1: (8.1 from [1]) Let G = SL2(p) and let T be the set








1 1

0 1


 ,




0 −1

1 0








.

Then T generates G and lT (G) ≤ m log p for some constant m.

Remark 2.2.2: As stated in [1], a crude upper bound for m is 500.

The following result about SL2(p) will be used in the proof of 1.1.6.
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Theorem 2.2.3: (proposition 2.2.2 of [9]) Let p be an odd prime. Define Σ2
p

to be the subset of SL2(p)








1 2

0 1


 ,




1 0

2 1








.

Then the set {X(SL2(p), Σ2
p)}p prime is an expander family and hence lΣ2

p
(SL2(p)) ≤

c log p for some constant c.

2.3 Mixing Times

Let G be a finite group and let P be a probability measure on G. Recall

from Chapter 1, that the mixing time of the random walk on G generated

by P is the lowest number k such that ‖P ∗k − U‖ < (2e)−1 where U is the

uniform distribution on G.

In order to determine the mixing time we need to know about P ∗k. Usually

we only have information about about the probability measure P and know

very little about P ∗k. We can begin to relate these two measures using the

idea of convolution.

Definition 2.3.1: Suppose Q and R are probability measures on a group G.

The convolution of Q with R, denoted Q ∗ R is the probability measure on
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G given by

Q ∗R(g) =
∑

h∈G

Q(gh−1)R(h).

It is easy to see that P ∗k(g) is given by P ∗(k−1) ∗ P (g). Hence we see that

P ∗k = (...((P ∗ P ) ∗ P )... ∗ P )︸ ︷︷ ︸
k times

To proceed further I will need to introduce the idea of a Fourier Transform

of a probability measure on G.

Suppose that ρ is an irreducible representation of G. The Fourier Transform

of P at ρ is given by

P̂ (ρ) =
∑
g∈G

P (g)ρ(g).

These Fourier transforms share many properties of Fourier transforms of

continuous functions. A property that will be particularly useful is that

Fourier transforms turn convolutions into products. By this we mean
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Q̂ ∗R(ρ) = Q̂(ρ)R̂(ρ)

and so

P̂ ∗k(ρ) = (P̂ (ρ))k.

In [3], Diaconis has shown that a Fourier transform P̂ (ρ) can be used to

bound the mixing time of G given by P in the following Lemma.

Lemma 2.3.2: [The Upper Bound Lemma]

Let P be a probability on a group G. Then

‖P ∗k − U‖2 ≤ 1

4

∑

ρ 6=1

dρtr(P̂
∗k(ρ)P̂ ∗k(ρ)∗)

where P̂ ∗k(ρ)∗ is the complex conjugate transpose of P̂ ∗k(ρ).

Here the sum is taken over all irreducible representations, ρ of G with ρ 6= 1.

Now, if P is constant on conjugacy classes, then P (g) = P (hgh−1) for all

g, h ∈ G. So for a fixed irreducible representation ρ we have
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P̂ (ρ) =
∑
g∈G

P (hgh−1)ρ(hgh−1)

= ρ(h)

(∑
g∈G

P (g)ρ(g)

)
ρ(h−1)

= ρ(h)
(
P̂ (ρ)

)
ρ(h−1)

for any element h of G. So ρ(h)P̂ (ρ) = P̂ (ρ)ρ(h) for all h ∈ Sn. Schur’s

Lemma now gives us that P̂ (ρ) = cρI for some constant cρ. Now since

P̂ ∗k(ρ) = (P̂ (ρ))k,

we have P ∗k(ρ) = ck
ρI and so Tr(P ∗k(ρ)P ∗k(ρ)∗) = dρ|cρ|2k where dρ is the

dimension of ρ.

Substituting into the Upper Bound Lemma we now have

‖P ∗k − U‖2 ≤ 1

4

∑

ρ6=1

d2
ρ|cρ|2k

Now if we bound c, we will be able to find an upper bound for the mixing

time for the walk generated by P . To illustrate how this can be used to find

bounds for mixing times, we return to the random transpositions example
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that was introduced in Chapter 1.

Recall that

P̂ (ρ) = cρI =
∑
g∈Sn

P (g)ρ(g).

Taking traces we get

dρcρ =
∑
g∈Sn

P (g)χρ(g)

where χρ is the character of ρ. We know that P takes value 2
n2 on the n(n−1)

2

transpositions, takes value 1
n

on the identity and is zero everywhere else.

Substituting in the values of P (g) into the above equality, we get

dρcρ =

(
n(n− 1)

2

)(
2

n2

)
χρ(τ) +

1

n
χρ(id)

where τ is a transposition. Simplifying this gives

cρ =

(
n− 1

n

)(
χρ(τ)

dρ

)
+

1

n
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and the Upper Bound Lemma gives us

‖P ∗k − U‖2 ≤ 1

4

∑

ρ6=1

d2
ρ

((
n− 1

n

)(
χρ(τ)

dρ

)
+

1

n

)2k

Bounding this expression requires some detailed knowledge of the Represen-

tation Theory of the Symmetric Group. Diaconis and Shashahani used a

formula by Frobenius that relates the character ratio, χρ(τ)

dρ
, to the shape

of the diagram of the corresponding λ-tableaux to establish that the largest

term in the sum corresponds to the n − 1-dimensional irreducible represen-

tation.

The largest term to bound is

(n− 1)2(1− 2

n
)2k.

Using Stirling’s formula and a MacLaurin expansion we have

(n− 1)2(1− 2

n
)2k = e2 log(n−1)+2k(1− 2

n
) = e−

4k
n

+2 log n+o( k
n2 )

Now if we put k = 1
2
n log n + cn, the above decreases exponentially with c.

Hence the mixing time of Sn given by the random walk generated by P is of

order n log n. More detail about how this sum was bounded is given in [4].
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2.4 Comparison

If we have a probability measure that is not constant on conjugacy classes,

the techniques described above do not help us.

A probability measure P on a group G is defined as being symmetric if for

each g ∈ G we have P (g) = P (g−1). If a probability measure on a group

has this property, we may use a method known as Comparison to bound the

mixing time of the group given by that measure. The Comparison results in

this section are taken from [4].

Let Q be a symmetric probability on a finite group G. We may associate a

|G| × |G| matrix, M , to Q with Mst = Q(st−1). Since the matrix M has real

value entries, is symmetric and is doubly stochastic, the Perron-Frobenius

Theorem states that its eigenvalues, π0, π,...π|G|−1 have the property 1 =

π0 ≥ π1... ≥ π|G|−1 ≥ −1.

Lemma 2.4.1:

4‖Q∗k − U‖2 ≤ |G|π2k
max

where πmax = max{π1, |π|G|−1|}.

From this we see that if we can establish bounds on the eigenvalues of the

matrix, M , we can find upper bounds for the mixing time given by Q.
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We may bound the smallest eigenvalue using the following Theorem from [4].

Theorem 2.4.2: If Q is a symmetric probability function on a symmetric set

of generators of a finite group, the smallest eigenvalue of Q, π|G|−1 is bounded

below by −1 + 2Q(id).

We can bound the other eigenvalues by using properties of L2(G), the linear

space of all real functions on G. Usually the eigenvalues of Q can be bounded

in terms of the eigenvalues of another walk, which we’ll denote by Q̃, that

we already know something about.

Define an inner product on real valued functions on G by

〈f1, f2〉 =
∑
s∈G

f1(s)f2(s).

If Q is symmetric, it defines a Laplace operator on the space of all linear

functions on G. This is given by

(I −Q)f(s) = f(s)−
∑
t∈G

f(t)Q(ts−1)

and has eigenvalues 1 − πi. There is a quadratic form associated with this

operator. It is given by
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ε(f, f) = 〈(I −Q)f, f〉

and is known as the Dirichlet form.

Theorem 2.4.3: Let Q and Q̃ be symmetric probabilities with eigenvalues

{πi}|G|−1
i=0 and {π̃i}|G|−1

i=0 respectively and associated Dirichlet forms ε and ε̃.

If there exists a constant A > 0 such that ε̃(f, f) < Aε(f, f) for all f , then

we have πi ≤ 1− 1−π̃i

A
for all i.

A value for A is given by the following theorem from [4]. Recall that a

generating set S of a group G is symmetric if for each x ∈ S, we have

x−1 ∈ S.

Theorem 2.4.4: Let Q and Q̃ be symmetric probabilities on G. Let S be a

symmetric generating set and let S be the support of Q. Then ε̃ ≤ Aε for

A = max
s∈S

1

Q(s)

∑
g∈G

|g|N(s, g)Q̃(g).

Here N(s, g) is the minimum number times s appears when g is written as a

product of elements in S, and |g| = lS(g).

To illustrate how these results may be used, we shall use comparison with
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the Random Transpositions example to work out the mixing time of Sn given

by the following walk.

Let S = {id, (1, 2), (1, 2, ..., n), (1, 2, ..., n)−1} and define P to be the uniform

distribution on S. It can be shown that any transposition in Sn can be

written as a product of at most 3n elements of S. We’ll use comparison with

the random walk on transpositions given by the probability distribution

P̃ (g) =





2
n2 if g is a transposition

1
n

if g is the identity

0 otherwise.

Substituting this into the theorem, we get that A ≤ 36n2.

In order to apply any of the other results we need to know the eigenvalues

of the matrix corresponding to P̃ . In [5], Diaconis and Shahshahani have

shown that the largest of these, π̃1, is 1− 2
n
.

Now 2.4.3 gives us that π1 ≤ 1− 1
18n3 .

The smallest eigenvalue can be bounded using 2.4.2. This is greater than or

equal to −1
2
.

Recall πmax = max{π1, |π|G|−1|}. From the above we have πmax = |π|G|−1| ≤
1− 1

18n2 .
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Using the bound for the smallest eigenvalue in 2.4.1 we have

4||Qk − U || ≤ |G|π2k
1

≤ n!(1− 1

18n3
)2k

≤ exp

(
n log n− 2k

18n3

)
.

So the mixing time decreases exponentially as 2k
18n3 decreases by multiples of

n log n, so k will have to be of order n4 log n.

Note that in [4], Diaconis shows that this bound may be improved to n3 log n.

It can also be shown that this bound is tight.

2.5 Mixing Times of Classical Groups

The random walks on the classical groups we will be studying are not gen-

erated by class probability functions. Hence we will need to use comparison

techniques to bound their mixing times.

The following result comes from [9] (page 175).

Theorem 2.5.1: Let P be a probability function on G such that the support of

P is a single conjugacy class, C, and P is constant on C. Then the eigenvalues
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of the matrix, M associated with P are precisely the character ratios χρ(C)

dρ
,

where ρ is an irreducible representation of G, dρ is the dimension of ρ and

χρ(C) is the value the character of ρ takes on the elements of C.

In the case of SLn(p), we will use comparison with the set of transvections

to find a bound for the mixing time given by the probability function Q on

our generating set, where Q is given by

Q(g) =





1
5

g = x, y, x−1, y−1 or I

0 otherwise.

Here x and y are the elements of our generating set S, which was defined in

Chapter 1.

Let T be the set of transvections in G and let Q̃ be the uniform distribution

on T. The random walk on G generated by Q̃ has an associated matrix M̃.

Since the support of Q̃ is the single conjugacy class, T, the eigenvalues of M̃

are the character ratios

{
χρ(t)

χρ(1)
: χρ is an irreducible representation of G

}

where t ∈ T .

In his paper, [6], Gluck has shown that these character ratios are bounded
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above by 19
20

in the following theorem.

Theorem 2.5.2: Suppose G is a quasi-simple group of Lie type. Then, if χ is

an irreducible representation of G, we have |χ(x)
χ(1)

| ≤ 19
20

for all x ∈ G\Z(G).

Using this bound in 2.4.3 will give us a bound on the eigenvalues of the

matrix associated with Q. Then, by applying 2.4.1 we will be able to get a

bound for the mixing time of G given by the random walk generated by Q.

In the case of Sp2n(p) we set Q to be the probability function

Q(g) =





1
5

g = v, w, v−1, w−1 or I

0 otherwise.

where u and v are the elements of the generating set S ′ described in Chapter

5.

The set of short root elements in Sp2n(p), is the conjugacy class vG, where

v is the element of our generating set S of Sp2n(p) , described in Chapter 5.

We will use comparison with the set of short root elements to determine the

mixing time of Sp2n(p) given by the following probability function.

We define Q̃ to be the uniform probability function on vG. As before, we

can bound the eigenvalues of M̃ , the matrix associated with Q̃, using 2.5.2.

Again the eigenvalues of the matrix associated with M̃ are bounded above
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by 19
20

.

From this and 2.4.3 we obtain a bound for the eigenvalues of the matrix

associated with Q and 2.4.1 will give us a bound on the mixing time of

Sp2n(p) with respect to the probability function Q.



3. THE DIAMETER OF THE SPECIAL LINEAR GROUP

3.1 Proof of Theorem 1.1.2

Let G be SLn(p), the Special Linear Group of n×n matrices over Fp. In this

chapter we will establish two bounds on the diameter of G with respect to

the generating set {x±1, y±1} which was described in Chapter 1.

For convenience, we recall the definition of x and y. We use the standard

notation ei,j to denote the matrix with 1 in position (i, j) and zeroes every-

where else. Define Ei,j as the matrix I + ei,j. To illustrate the proofs we will

display n× n matrices with the zero entries omitted.

As in Chapter 1, we may define a generating set, S, of G as follows. Let the

standard basis of (Fp)
n be denoted by e1, e2, ...en. Define y to be the matrix

in G that sends ei to ei+1 for i = 1, 2, 3, ...n − 1 and sends en to (−1)n+1e1.

That is
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y =




(−1)n+1

1

1

. . .

1




.

Define x to be the transvection E1,2, i.e

x =




1 1

1

. . .

1




.

Set S = {x±1, y±1}. In this chapter we shall show that S generates G and

bound the diameter of G with respect to S. For g ∈ G we will denote

the length of g in S by lS(g). If H is a subset of G we define lS(H) =

max{lS(h)|h ∈ H}.

Most of this chapter will be devoted to proving Theorem 1.1.2,

The diameter of SLn(p) with respect to S is at most 50n2p.

Theorem 1.1.3, the statement of which was
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There exists a constant K, which is not dependent on n and p, such that the

diameter of SLn(p) with respect to S is at most Kn3 log p.

will then be deduced at the end of the chapter.

In Chapter 2 we saw how G can be written as the product BNB where N is

the subgroup of monomial matrices and B is the group of upper triangular

matrices. Since any matrix in B may be written as the product of an upper

uni-triangular matrix and a diagonal matrix, we may write G = UNU where

U is the group of upper uni-triangular matrices.

We shall bound the diameter of G by bounding lS(U) and lS(N). To do this

we shall make use of the following identities.




a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
... · · · ...

an,1 an,2 · · · an,n




x =




a1,1 a1,1 + a1,2 · · · a1,n

a2,1 a2,1 + a2,2 · · · a2,n

...
... · · · ...

an,1 an,1 + an,2 · · · an,n




x




a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
... · · · ...

an,1 an,2 · · · an,n




=




a1,1 + a2,1 a1,2 + a2,2 · · · a1,n + a2,n

a2,1 a2,2 · · · a2,n

...
... · · · ...

an,1 an,2 · · · an,n
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a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
... · · · ...

an,1 an,2 · · · an,n




y =




a1,2 a1,3 · · · a1,n −a1,1

a2,2 a2,3 · · · a2,n −a2,1

...
... · · · ...

...

an,2 an,3 · · · an,n −an,1




y




a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
... · · · ...

an,1 an,2 · · · an,n




=




−an,1 −an,2 · · · −an,n

a1,1 a1,2 · · · a1,n

...
... · · · ...

an−2,1 an−2,2 · · · an−2,n

an−1,1 an−1,2 · · · an−1,n




We think of a post-multiplication of a matrix by x as adding the first column

of the matrix to its second column. Similarly post-multiplying a matrix by

x−1 subtracts the first column from the second column.

We may view pre-multiplication by x as adding the second row to the first

row. Pre-multiplication by x−1 corresponds to subtracting the second row

from the first.

Post-multiplication by y applies the permutation (1, n, n − 1..., 3, 2) to its

columns and multiplies the nth column by (−1)n+1. Pre-multiplication by

y applies the permutation (1, 2, 3, ...n) to the rows and multiplies the top
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row by (−1)n+1. Multiplication by y−1 reverses the operations described

above, so, for example, post multiplying by y−1 multiplies the nth column

by ((−1)n+1 then applies the permutation (1, 2, ...n) to the columns.

Construction of N

The matrices in N have precisely one non-zero entry in each row and column.

Fix a matrix X ∈ N with entry xi in row i. There exists a permutation

π ∈ Sn such that for each i, xi appears in position (i, π(i)) of X.

We shall construct X (i.e., express X as a product of elements of S) by

first constructing a matrix P, where P is monomial with entries of ±1 in

positions (i, π(i)). Our first aim is to construct the transposition matrices,

{ti,j : 1 ≤ i, j ≤ n} which are defined as follows. Suppose i 6= j. Define

ti,j ∈ G to be the matrix that sends ei to −ej, sends ej to ei and leaves all

other basis elements fixed. To construct ti,j we will need to determine the

length of a matrix of form Ei,j.

Lemma 3.1.1: lS(E1,k) ≤ 10k.

Proof. Let Zk be the n× n matrix with entries of 1 on the diagonal and in
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positions (i, j) for i < j ≤ k. All other entries are zero. So Zk has this form.




1 1 · · · 1 1

1 · · · 1 1
. . .

...
...

1 1

1
. . .

1

1




Note that Z2 = x. We construct Zi+1 from Zi as follows. Post multiplying

by y performs the permutation (1, n, n − 1, ...2) on the columns of Zk and

multiplies the last column by δ where δ = (−1)n+1. So post multiplying Zk

by yk−1 gives us the matrix of form




1 δ δ · · · δ

1 δ · · · δ

...
. . .

...

1 δ

1

1
. . .

1




.
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Now multiplying by x adds the first column to the second column so

Zky
k−1x =




1 1 δ δ · · · δ

1 1 δ · · · δ

...
...

. . .
...

1 1 δ

1 1

1
. . .

1




Now, if we post multiply by y−1, we apply the permutation (1, 2, ..., n) to the

columns and multiply the first column by δ. So post multiplying by y−(k−1)

gives




1 1 · · · 1 1 1

1 · · · 1 1 1
. . .

...
...

...

1 1 1

1 1

1
. . .

1
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which is Zi+1. So for any i ∈ {2, 3, ...n − 1} we have Zi+1 = Ziy
i−1xy−(i−1).

Hence for each 2 ≤ k ≤ n, we have

Zk = Zk−1y
k−2xy−(k−2).

Substituting Zk−1 = Zk−2y
k−3xy−(k−3) we get,

Zk = Zk−2y
k−3xy−(k−3)yk−2xy−(k−2)

= Zk−2y
k−3xyxy−(k−2).

Now writing Zk−2 in terms of Zk−3 we have

Zk = Zk−3y
k−4xy−(k−4)yk−3xy−1xy−(k−2)

= Zk−3y
k−4xyxyxy−(k−2).

Continuing like this we eventually have

Zk = Z2y(xy)k−3xy−(k−2)

and since Z2 = x,
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Zk = xy(xy)k−3xy−(k−2)

= (xy)k−2xy−(k−2).

From Zk we construct the matrix Yk which has form




1 1

1 1

1 1

1 1
. . .

...

1 1

1 1

1
. . .

. . .

1




.

By post multiplying the matrix Zk by yk−3, we repeatedly multiply the first

column by δ then apply the permutation (1, n, n− 1, ..., 2).
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Hence

Zky
k−3 =




1 1 1 δ δ · · · δ

1 1 1 δ · · · δ

...
...

...
. . .

...

1 1 1 δ

1 1 1

1 1

1

1

1




.

Now post multiplying by x−1 subtracts the first column from the second so

Zky
k−3x−1 =




1 1 δ δ · · · δ

1 1 δ · · · δ

...
...

. . .
...

1 1 δ

1 1

1 1

1

1

1




.

Post multiplying by y−1 gives us
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Zky
k−3x−1y−1 =




1 1 1 δ · · · δ

1 1 1
. . .

...
...

...
... δ

1 1 1

1 1

1 1

1

1

1




.

Now post multiplication by x−1 gives us

Zky
k−3x−1y−1x−1 =




1 1 δ · · · δ

1 1
. . .

...
...

... δ

1 1

1 1

1 1

1

1

1




.

Continuing to repeatedly post multiply by y−1 and x−1 we eventually have
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Yk = Zky
k−3(x−1y−1)(k−3)x−1

= (xy)k−2xy(−k−2)yk−3(x−1y−1)(k−3)x−1

= (xy)k−2xy−1(x−1y−1)(k−3)x−1.

Pre-multiplying Yk by y performs the permutation (1, n, n− 1, n− 2, ...2) on

the rows of Yk and multiplies the last row by δ. So

y−1Yk =




1 1

1 1

1 1
. . .

...

1 1

1 1

1
. . .

. . .

1

δ δ




.

Now pre-multiplying this matrix by x−1 subtracts the second row from the

first.
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x−1y−1Yk =




1 −1 0

1 1

1 1
. . .

...

1 1

1 1

1
. . .

. . .

1

δ δ




.

Pre multiplying by y−1 now gives us
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1 1

1 1
. . .

...

1 1

1 1

1
. . .

. . .

1

δ δ

δ −δ




and so
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x−1y−1x−1y−1Yk =




1 −1 0

1 1
. . .

...

1 1

1 1

1
. . .

. . .

1

δ δ

δ −δ




.

Continuing to pre multiply by x−1y we eventually have

(x−1y−1)k−2Yk =




1 0

1
. . .

1

δ δ

δ −δ

. . . . . .

δ −δ




.
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Pre multiplying by y performs the permutation (1, 2, ...n) on the rows and

multiplies row 1 by δ, so

y(k−2)(x−1y−1)k−2Yk =




1 1

1 −1

1 −1

1 −1
. . . . . .

1 −1

1

1
. . .

. . .

1




We call this matrix Wk. So

Wk = y(k−2)(x−1y−1)(k−2)Yk

= y(k−2)(x−1y−1)(k−2)(xy)k−2xy−1(x−1y−1)(k−3)x−1

To get E1,k from this matrix we just need to remove the -1 entries from

above the diagonal. Using similar arguments as before, post-multiplying Wk

by yxy−1 gives us
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1 1

1

1 −1

1 −1
. . . . . .

...

1 −1

1

1
. . .

. . .

1




.

Pre-multiplying this matrix by y2xy−2 gives us
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1 1

1

1

1 −1
. . . . . .

...

1 −1

1

1
. . .

. . .

1




Carrying on like this we have

E1,k = Wkyxy−1y2xy−2...yk−2xy−(k−2)

and so

E1,k = Wk(yx)(k−2)y−(k−2)

= y(k−2)(x−1y−1)(k−2)(xy)k−2xy−1(x−1y−1)(k−3)x−1(yx)(k−2)y−(k−2)

Hence lS(E1,k) < 10k.
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Corollary 3.1.2: lS(Ei,j) ≤ 12n

Proof. Suppose 1 < k < n .Pre-multiplying E1,k by y−1 applies the permu-

tation (1, 2, ...n) to the rows and multiplies the top row by δ. So

yE1,k =




δ

1 1

1

1

1

1
. . .

1




.

Now post multiplying by y−1 performs the permutation (1, 2, 3, ...n) on the

columns and multiplies the first column by δ. So We are left with yE1,ky
−1 =

E2,k+1. By repeating this argument we have yrE1,ky
−r = E1+r,k+r providing

k + r ≤ n. Applying the same argument to any Ea,b shows that we have

yEa,by
−1 = Ea+1,b+1 providing i, j < n.

If, i < j ≤ n we have Ei,j = y(i−1)E1,j−(i−1)y
−(i−1). Hence if i < j ≤ n, we

have

lS(Ei,j) ≤ E1,j−(i−1) + 2(i− 1)

≤ 10(j − (i− 1)) + 2(i− 1) < 10j − 8(i− 1).
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This shows that if i < j ≤ n then lS(Ei,j) < 10n. Also it shows that a matrix

Eb,n has length of at most 10n− 8(b− 1).

Now observe that

yE1,ny
−1 = y




1 1

1
. . .

. . .

1

1




y−1

=




1

δ 1

1
. . .

. . .

1




This is E±1
2,1 . Similarly for all 1 ≤ b ≤ n− 1 we have yEb,ny

−1 = E±1
b+1,1.

Suppose 2 ≤ a ≤ n. From the argument in the previous paragraph we have

lS(Ea,1) = lS(Ea,1)
−1 ≤ 2 + lS(Ea−1,n) ≤ 10n− 8(a− 2) + 2.
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Now if j < i ≤ n, we can write Ei,j = y−(j−1)Ei−(j−1),1y
(j−1). So

lS(Ei,j) < lS(Ei−(j−1),1) + 2(j − 1)

< 10n− 8(i− (j − 1)) + 2 + 2(j − 1) < 10n + 10(j − 1)− 8i + 2

Since i > j this gives us

lS(Ei,j) < 10n + 2(j − 1) + 2 ≤ 12n.

Lemma 3.1.3: lS(ti,j) ≤ 34n

Proof.

Note that, since t−1
i,j = tj,i, we only need to show how to construct ti,j where

j > i. The matrix E1,k has form
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1 1

1

. . .

1

1

1

. . .

1




As mentioned in the remark above, pre-multiplying by E−1
k,1 will subtract the

1st row from the kth row. So

E−1
k,1E1,k =




1 1

1

. . .

1

−1 0

1

. . .

1




.

Now pre-multiplying by E1,k adds the kth row to the 1st so
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E1,kE
−1
k,1E1,k =




0 1

1

. . .

1

−1 0

1

. . .

1




= t1,k.

By applying 3.1.1 and 3.1.2 we see that lS(t1,k) ≤ 32n. Also ymt1,ky
−m =

t1+m,k+m for m ≤ n − k. So we have ti,j = y(i−1)t1,j−(i−1)y
(i−1). and hence

lS(ti,j) ≤ 34n.

Recall that for each matrix X ∈ N , there is a permutation π such that the

non-zero entries of X appear in the positions (i, π(i)). We denote the entry

in the ith row of X as xi. We will now construct P, a monomial with entries

of ±1 in positions (i, π(i)).

We may write π as a product of disjoint cycles π = π1π2...πr. Suppose

πi = (pi1 , pi2 ...pik). Then the product Pi = tpik−1
,pik

tpik−2
,pik−1

...tpi1
,pi2

is a

monomial matrix with the non-zero entry of the jth row appearing in the

πi(j)th column. Also (−1)ik+1 is the non-zero entry in the row pik and all

other rows have a non-zero entry of 1.
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If we define P = P1P2...Pr then P is monomial with the non-zero entry of

row j in the π(j)th column. We can write P as a product of at most n of the

matrices ti,j. Without loss of generality we can say P has a (−1)ik+1 in the

row corresponding to the last number appearing in each πi and 1 in every

other row.

Lemma 3.1.4: lS(P ) ≤ 34n2

Proof. This follows immediately from 3.1.3 and the discussion above.

Define A to be the matrix




a1

a2

. . .

an




,

where aj = (−1)ik+1xj if j is the last number appearing in one of the πi and

aj = xj otherwise. It is easy to see that AP = X. In order to construct A
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we will need to construct the matrices of form

Ma =




a

a−1

1

. . .

1




where a ∈ F∗p.

Lemma 3.1.5: lS(Ma) ≤ 5np

Proof. We have

x−a =




1 −a

1

1

. . .

1




.

Now, using the identities from the beginning of this section, post multiplying

the above matrix by (E2,1)
a−1

adds a−1 times its second column from its first

column.
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So

x−a(E2,1)
a−1

=




1+(−a)a−1 −a

a−1
1

1

. . .

1




=




0 −a

a−1 1

1

. . .

1




.

By post multiplying by x−a we add −a times the first column to the second

column. We get

x−aEa−1

2,1 x−a =




0 −a

a−1 1+(−a)a−1

1

. . .

1




=




0 −a

a−1 0

1

. . .

1




.

Now to get Ma we just post multiply by t1,2.

We have Ma = x−aE2,1x
−at1,2. Now E2,1 = y−nxyn so lS(E2,1) ≤ 2n−1. Also,

following the same proof as 3.1.3 we have t1,2 = xE−1
2,1x. So lS(t1,2) ≤ 2n + 1.

Now

lS(Ma) ≤ 2p + (2n− 1)p + (2n + 1)p ≤ 5np.
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Lemma 3.1.6: lS(A) ≤ 6n2p

Proof.

It is easy to check that

y−1...y−1y−1Ma1yMa2a1yMa3a2a1 ...Manan−1...a1y

gives the matrix A.

Each matrix Ma has length of at most 5np. Hence A has length less than or

equal to 5n2p + 2n, which is less than or equal to 6n2p.

Combining 3.1.6 with 3.1.4 we have the following corollary.

Corollary 3.1.7: If X is an arbitrary matrix in N then lS(X) ≤ 40n2p.

Construction of U

Fix W ∈ U and suppose
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W =




1 w1,2 w1,3 · · · w1,n

1 w2,3 · · · w2,n

. . . . . .
...

. . . wn−1,n

1




.

Let 2 ≤ k ≤ n and define Wk to be the matrix




1 w1,2 w1,3 · · · w1,k

1 w2,3 · · · w2,k

. . . . . .
...

. . . wk−1,k

1

1

. . .

1




.

We can construct Wk−1 from Wk as follows.

Let



3. The Diameter of The Special Linear Group 66

Ck−1 =




1 w1,k

1 w2,k

. . .

. . . wk−1,k

1

1

. . .

1




.

It is not hard to check that Ck−1Wk−1 = Wk. Since W = Wn and W2 = C1

we have

W = Cn−1Wn−1 = Cn−1Cn−2Wn−2 = ... =

(
1∏

i=n−1

Ci

)

and so, to construct W, it is enough to construct the matrices Ci.

Lemma 3.1.8: lS(Ck) ≤ 10kp

Proof.

In the proof of 3.1.2 we saw that the matrix
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Yk =




1 1

1 1

. . .
...

1

. . .

. . .

1




has length of at most 4k in S.

Now pre multiply this matrix by the product

(
y(k−1)

k−1∏
m=1

y−1xwm,k−1

)
.
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This gives the matrix




1 w1,k − 1 w1,k

1 w2,k − 1 w2,k

1
. . .

...

. . . . . .

1 wk−2,k − 1

1 wk−1,k

1

1

. . .

1




We need to get rid of the unwanted entries in the (i, i + 1) positions. To do

this we post multiply by

(
1∏

m=k−1

(x1−wm,ky)

)
y−(k−1)

to get the matrix Ck.

Now we have lS(Ck) ≤ 8k + 2kp ≤ 10kp.
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Corollary 3.1.9: lS(W ) < 5np2

Proof. We have

lS(W ) =
n−1∑
i=2

lS(Ci) ≤
n−1∑
i=2

10kp < 5n2p.

Now Theorem 1.1.2 can be deduced immediately from 3.1.7 and 3.1.9.

3.2 Proof of Theorem 1.1.3

To prove Theorem 1.1.3 we need 2.2.1, which was stated in Section 2.2. and

proved by Babai, Lubotzky and Kantor in [1].

Lemma 3.2.1: Let H = 〈Ei,j, tj,i〉.

Then lS(H) ≤ 34mn log(p) where m is the constant from 2.2.1.

Proof. H is clearly isomorphic to SL2(p). So, from 2.2.1 we see that H

has length m log(p) with respect to the set {Ei,j, tj,i}. From 3.1.2 and 3.1.3

we know that lS(Ej,i) and lS(tj,i) are both bounded above by 34n. Hence

lS(H) ≤ 34nm log(p).
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By using this bound and following exactly the same methods as before we

may deduce Theorem 1.1.3 as follows. We begin by bounding the diameter

of N.

Lemma 3.2.2: lS(N) ≤ 38n2 log p

Proof. By 3.2.1, lS(Eq
i,j) ≤ 34nm log p for any q ∈ Fp.

Let P be a monomial matrix as described in the paragraph before 3.1.1. By

3.1.4, lS(P ) ≤ 34n2.

Using the notation of 3.1.5, each matrix of form Ma lies in the group gener-

ated by {E1,2, t2,1.} Observe that t2,1 = t−1
1,2 = (E1,2E

−1
2,1E1,2)

−1. Also E−1
2,1 =

y−nE1,2y
n. So lS(E1,2) < 2n+1 and t2,1 has length of at most 2n+3, which is

at most 3n. This gives us that each matrix Ma has length at most 3mn log p.

Now, the matrix A can be written as the product

y−1...y−1y−1Ma1yMa2a1yMa3a2a1 ...Manan−1...a1y.

Hence lS(A) ≤ 2n + 3n2m log p ≤ 4n2m log p. Since each X ∈ N can be

written X = AP, we have lS(X) ≤ 4n2m log p + 34n2 ≤ 38n2m log p.
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Lemma 3.2.3: Let W be any matrix in U . Then lS(W ) ≤ 17.5n3m log p.

Proof. In this proof we will use the same notation as we did for the proof

of 3.1.8.

Each xwm,k−1 has length of at most 34nm log p. As in the proof of 3.1.8, we

obtain the matrix Ck by pre-multiplying the matrix




1 1

1 1

. . .
...

1

. . .

. . .

1




by

(
y(k−1)

1∏

m=k−1

y−1xwm,k−1

)
.
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and then post multiplying by

(
k−1∏
m=1

(x1−wm,ky)

)
y−(k−1).

Since each xwm,k−1 has length of at most 34nm log p and the matrix




1 1

1 1

. . .
...

1

. . .

. . .

1




has length 4k, we have lS(Ck) ≤ 4k + 2(2k +
∑n

k=1 34mnk log p) ≤ 8k +

34n2m log p ≤ 35n2m log p.

Finally, since W = Π1
k=n−1Ck we have lS(W ) ≤ 17.5mn3 log p.

Theorem 1.1.3 now follows immediately from these last two lemmas.



4. USING COMPARISON TO DETERMINE A MIXING

TIME OF THE SPECIAL LINEAR GROUP

4.1

In this chapter we prove Theorem 1.4.2. Recall that the random walk we are

studying is generated by the probability distribution, Q, where Q is given by

Q(g) =





1
5

g = x, y, x−1, y−1 or I

0 otherwise.

In Chapter 2 we saw the mixing time of a group with respect to a given ran-

dom walk can be determined using the eigenvalues of the matrix associated

with the random walk. In particular, we saw how to bound the Variational

Distance between Qk and U , the uniform distribution on SLn(p) using 2.4.1.

To use 2.4.1 we needed bounds on the eigenvalues of the matrix corresponding

to Q. These bounds could be obtained using comparison with another ran-
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dom walk. In particular2.4.3 and 2.4.4 bounded the eigenvalues of the matrix

corresponding to Q in terms of the eigenvalues of the matrix corresponding

to another random walk.

In order to establish bounds on the eigenvalues of the matrix corresponding

to Q we shall use comparison with the uniform random walk on the set of

transvections in SLn(p).

We shall use these comparison theorems with some results determined about

the character ratios on the set of transvections in SLn(p) to determine the

eigenvalues of Q.

Let Q̃ be the uniform distribution on the set of transvections in SLn(p).

Then Q̃ has corresponding matrix with eigenvalues π̃i .

We first determine a suitable value of A using 2.4.4. We need to determine a

bound for the values |t| and N(s, t). Now, for any transvection t, |t| = lS(t)

and N(s, t) ≤ lS(t), so finding a bound for lS(T ) where T is the set of

transvections in S will provide us with a bound for all values of |t| and

N(s, t).

We will use the following result, which K. Magaard has proved in personal

correspondence with Martin Liebeck, and Lemma 3.1.2 to find lS(T ).

Lemma 4.1.1: Let t be a transvection in SLn(p). Then t is the product of at
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most 4n− 5 elementary matrices.

We need to introduce some notation before beginning the proof.

Recall that a transvection, t, in SLn(p) is an element that fixes an n − 1

dimensional subspace of Fn
p which we shall denote CV (t). This subspace is

called the centre of t. There is a vector vt ∈ CV (t) such that, for each v in

V −CV (t), vt = v +αvt for some α ∈ F∗p. The subspace 〈vt〉 is called the axis

of t and we denote it by [V, t].

For ease of notation I will use Ei,j(q) to denote Eq
i,j. We define Ui,j to be the

group = {Ei,j(q)|q ∈ Fp}. The root groups of G are the conjugates of U1,2.

In the proof of 4.1.1 we will need to consider the action of SLn(p) on the

dual space, V ∗, of V . Let e1, e2, ...en be a standard basis of SLn(p) and let

f1, f2, ...fn be the corresponding dual basis of V ∗. We will say SLn(p) acts

on V from the right and acts on V ∗ from the left as follows.

For any f ∈ V ∗ and g ∈ SLn(p) we have (g(f)) (v) = f(vg−1). Note that

each transvection t ∈ SLn(p) is also a transvection when it acts n V ∗.

We denote the centre of t in V ∗ by CV ∗(t) and the axis by [V ∗, t].

We will use the following three remarks in the proof of 4.1.1.

Remark 4.1.2: If t is a transvection in SLn(p), then the root group of t is
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the set of transvections {tq|q ∈ Fp}. If two transvections lie in the same root

group then they have the same axis and the same center. Conversely if two

transvections have equal center and axis, then they must lie in the same root

group.

Remark 4.1.3: CV (U1,2) = 〈e2, . . . , en〉, [V, U1,2] = 〈e2〉.
CV ∗(U1,2) = 〈f1, f3, f4 . . . , fn〉, [V ∗, U1,2] = 〈f1〉. Note that CV (U1,2) =

Ker(f1).

Remark 4.1.4: Let R be a root group and t ∈ R. If s ∈ GL(V ), then

CV (s−1ts) = CV (t)s, [V, s−1Rs] = [V, R]s, and CV ∗(s
−1ts) = s−1CV ∗(t),

[V ∗, s−1Rs] = s−1[V ∗, R].

Proof. (of 4.1.1) Let τ be a transvection and let v∗ 6= 0 be a vector in [V ∗, τ ].

With respect to the standard basis of V ∗, v∗ =
∑n

i=1 αifi. As v∗ 6= 0 we have

some j for which αj 6= 0. Now let σ = Πi6=jEi,j(
−αi

αj
). Then σv∗ = αjfj and

thus by Remark 4.1.4 we see that [V ∗, στσ−1] = 〈fj〉.

As in Remark 4.1.3 we have CV (στσ−1) = 〈e1, . . . , ej−1, ej+1, . . . en〉 and

[V, στσ−1] ⊂ CV (στσ−1).

Any element ρ ∈ GL(V ) which centralizes fj stabilizes CV (στσ−1). Let v 6= 0

be a vector in [V, στσ−1]. Now v =
∑n

k=1,k 6=j βkek. For some i we must have
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βi 6= 0. Hence, if we let ρ = Πk 6=i,jEi,k(
−βk

βi
), we have ρfj = fj and again by

Remark 4.1.4, [V, ρ−1στσ−1ρ] = [V, στσ−1]ρ = 〈ei〉.

We know that ρ−1στσ−1ρ is a transvection with axis ei and center 〈e1, . . . , ej−1, ej+1, . . . en〉.
Thus ρ−1στσ−1ρ is in Uj,i and so ρ−1στσ−1ρ = Ej,i(α) for some α ∈ F. As ρ

and σ are products of elementary matrices we have now expressed τ as the

following product of elementary matrices τ = σ−1ρEj,i(α)ρ−1σ. The number

of factors in the product is at most 2(n − 1) + 2(n − 2) + 1 = 4n − 5, as

claimed.

Proposition 4.1.5: Let T be the set of transvections in SLn(p). Then lS(T ) ≤
136mn2 log p.

Proof. Each matrix Ei,j(c) lies in the group generated by S ′ = 〈Ei,j, ti,j〉
and from 2.2.1 we see that lS′(Ei,j(c)) ≤ m log p where m is the constant in

2.2.1. Also,from 3.1.2, we know that each matrix of the form Ei,j and ti,j can

be written as a product of at most 34n elements of S. Hence lS(Ei,j(c)) ≤
34mn log p.

Now, applying 4.1.1, we have lS(T ) ≤ (4n− 5)34mn log p ≤ 136mn2 log p.

Substituting this value into 2.4.4 we get
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A = maxs∈S
1

Q(s)

∑
g∈G |g|N(s, g)Q̃(g)

≤ 5
∑

t∈T (136mn2 log p)2Q̃(t).

= 5
∑

t∈T (136m)2n4(logp)2Q̃(t)

= Kn4 log2 p

where K is a constant.

Next we bound π̃1. Since the support of Q̃ is a single conjugacy class, from

2.5.1 we see that the eigenvalues of M̃ are the character ratios χρ(t)

χρ(1)
where ρ

is an irreducible representation of G and t is a transvection.

In 2.5.2 these ratios are bounded above by 19
20

.

Now we have |χ(x)|
|χ(1)| ≤ 19

20
and so π̃1 ≤ 19

20
.

Now

π1 ≤ 1− 1− π̃1

A
≤ 1− 1− 19

20

A
= 1− 1

20A

We can write 1
20A

≥ 1
K′n4(log p)2

where K ′ is a constant So we have π1 ≤
1− 1

K′n4(log p)2
.
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Now we can use 2.4.2 to bound the eigenvalue π|G|−1.

−π|G|−1 ≥ −1 + 2Q(id) = −1 +
2

5

Hence |π|G|−1| is bounded above by 3
5

and the largest eigenvalue π1, is bounded

above by 1− 1
Kn4p(log p)2

.

We can now prove Theorem 1.4.2.

Proof. We have

4||Qk − U ||2 ≤ |G|π2k
1

≤ pn2

(
1− 1

K ′n4(log p)2

)2k

≤ exp

(
n2 log p− 2k

K ′n4(log p)2

)

= exp

(
K ′n6(log p)3 − 2k

K ′n4(log p)2

)
.
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This shows that the mixing time of SLn(p) is of order n6(log p)3.



5. THE DIAMETER OF THE SYMPLECTIC GROUP

OVER FINITE FIELDS WITH PRIME ORDER

5.1 Definitions and Notation

In this chapter we will prove 1.1.3 and 1.1.5. Let G denote the Symplectic

group of 2n × 2n matrices over Fp where p is an odd prime. We order the

symplectic basis of F2n
p as e1, e2, ...en, fn, fn−1, ...f1. Any matrix in G may be

written




A B

C D




where A,B,C and D are n× n matrices.

Recall that, in Chapter 1, we defined a generating set of Sp2n(p) as follows.
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Using the notation of Chapter 3, define v to be the matrix




x 0

0 x−TJ




where x is the element of our generating set of SLn(p) described in Chapter

1 and at the beginning of Chapter 3. Recall that x−TJ means the inverse

transpose of x conjugated by the matrix J, which is described just before the

statement of 2.1.4. By 2.1.4 v lies in Sp2n(p).

Define w to be the product




−1

1

. . .

. . .

1

1










1

1

. . .

1


 0

0




1

1

. . .

1




−TJ




.

Then v is a short root element of G and w is a a member of the Weyl group

of G. We shall show the set S ′ = {v±1, w±1} generates G and determine a

bound for lS′(G).
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We may use similar methods to those used in Chapter 3 to express matrices as

products of our generators. Since the generators we use to generate Sp2n(p)

are similar to those we used to generate SLn(p) we may also use some results

from Chapter 3 .

In particular, in early sections of the proof,we will often be dealing with

matrices of form 


A 0

0 A−TJ




where A−TJ denotes the inverse transpose of A conjugated by the matrix J .

By 2.1.4, these matrices lie in Sp2n(p).

Observe that left multiplying the matrix above by v would give us




xA 0

0 (xA)−TJ


 .

The identities from chapter 3 can now enable us to work out how matrices

may be written as the product of elements of S ′.

We deal with multiplication by w in a similar way to how we dealt with y.

In particular, post-multiplication by w can be thought of as applying the

permutation (1, n + 1, n + 2, ..., 2n, n− 1, n− 2, ..., 2). to the columns of the

matrix, followed by reversing the sign of all entries in the n+1th column.Pre-

multiplication by w can be thought of as applying the permutation (1, 2, ...n−
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1, 2n, 2n− 1, ...n) to the rows followed by reversing the sign of all entries in

the 1st row.

From 2.1.2 we know that we may write G = BNB where N is the subgroup of

monomials in G and B is the group of upper triangular matrices. Since each

matrix in B is the product of a diagonal matrix with an upper uni-triangular

matrix we may write G = UNU and so it is sufficient to determine the

diameters of U and N.

In order to construct either of these subgroups we need to construct the root

groups of G as products of our generators in S ′. We begin by constructing

the short root elements.

5.2 Construction of Short Root Elements

Define Fi,j to be the matrix




Ei,j 0

0 E−TJ
i,j




where Ei,j is the same as described in Chapter 3. The matrices Fi,j are short

root elements of G.
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Lemma 5.2.1: Fix k ≤ n. Then lS′(F1,k) < 10k.

Proof. Let Z ′
k be the 2n× 2n matrix of form




Zk 0

0 Z−TJ
k




where Zk is as described in Lemma 3.1.2.

Note that Z ′
2 = v. We construct Z ′

k+1 from Z ′
k as follows. Post multiplying

by w performs the permutation (1, n + 1, n + 2..., 2n, n− 1, n− 2, ...2) on the

columns of Z ′
k and multiplies the (n− 1)th and (n + 1)th column by −1.So

Z ′
kw

(k−1) looks like this.
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1

1

.

.

.

1

1

. . .

. . .

1







−1 · · · · · · −1

−1 · · · −1

.

.

.

−1







0 · · · · · · . 0 ∗ · · · ∗
0 · · · · · · 0 ∗ · · · ∗
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 · · · · · · 0 ∗ · · · ∗
0 · · · · · · 0 ∗ · · · ∗







0 · · · · · · . 0 ∗ · · · ∗
0 · · · · · · 0 ∗ · · · ∗
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 · · · · · · 0 ∗ · · · ∗
0 · · · · · · 0 ∗ · · · ∗







Here we keep track of possible non-zero matrix entries with stars.

Now, multiplying by v adds the first column to the second and subtracts the

2n− 1th column from the 2nth. Hence Z ′
kw

(k−1)v looks like this.
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1 1

1 1

.

.

.

.

.

.

1 1

1 1

1

. . .

1







−1 · · · −1 −1

−1 · · · −1

.

.

.

−1







0 · · · · · · . 0 ∗ · · · ∗
0 · · · · · · 0 ∗ · · · ∗
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 · · · · · · 0 ∗ · · · ∗
0 · · · · · · 0 ∗ · · · ∗







0 · · · · · · . 0 ∗ · · · ∗
0 · · · · · · 0 ∗ · · · ∗
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 · · · · · · 0 ∗ · · · ∗
0 · · · · · · 0 ∗ · · · ∗







Now post-multiplying by w−1 performs the permutation (1, 2, ...n, 2n, 2n −
1, ...n+1) to the columns and multiplies the first column by−1 so Z ′

kw
(k−1)vw−(k−1)

looks like this.
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1 1 · · · 1 1

1 · · · 1 1

. . .
.
.
.

.

.

.

1 1

1

. . .

1

1




0

0




∗ ∗ · · · · · · ∗ ∗
∗ ∗ · · · · · · ∗ ∗
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

∗ ∗ · · · · · · ∗ ∗
∗ ∗ · · · · · · ∗ ∗







Since we are certain that the bottom left and top right quadrants are zero,

2.1.4 tells us that the bottom right quadrant is Z−TJ
k+1 and so we have ended

up with the matrix Z ′
k+1. So for any i ∈ {2, 3, ...n − 1} we have Z ′

i+1 =

Z ′
iw

(i−1)vw−(i−1). Hence for each 2 ≤ k ≤ n, we have

Z ′
k = Z ′

k−1w
(k−2)vw−(k−2).

Substituting Z ′
k−1 = Z ′

k−2w
(k−3)vw−(k−3) we get,

Z ′
k = Z ′

k−2w
(k−3)vw−(k−3)w(k−2)vw−(k−2)

= Z ′
k−2w

(k−3)vwvw−(k−2).
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Now writing Z ′
k−2 in terms of Z ′

k−3 we have

Z ′
k = Z ′

k−3w
(k−4)vw−(k−4)w(k−3)vwvw−(k−2)

= Z ′
k−3w

(k−4)vwvwv−(k−2).

Continuing like this we eventually have

Z ′
k = Z ′

2w(vw)k−3vw−(k−2)

and since Z ′
2 = v,

Z ′
k = (vw)k−2vw−(k−2).

From Z ′
k we construct the matrix Y ′

k which has form




Yk 0

0 Y −TJ
k




where Yk is as described in 3.1.2.

By post multiplying the matrix Z ′
k by w(k−3), we repeatedly apply the per-

mutation (1, n + 1, n + 2, ..2n, n − 1, n − 2..., 2) and multiply the n + 1th
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column by −1.

Hence we get a matrix of form







1 1 1

1 1 1

.

.

.

.

.

.

.

.

.

1 1 1

1 1 1

1 1 1

1 1

1







−1 · · · · · · · · · −1

−1 · · · · · · −1

.

.

.

−1 −1

−1







0 0 0 ∗ · · · · · · ∗
0 0 0 ∗ · · · · · · ∗
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 ∗ · · · · · · ∗
0 0 0 ∗ · · · · · · ∗







0 · · · · · · · · · 0 ∗ · · · · · · ∗
0 · · · · · · · · · 0 ∗ · · · · · · ∗
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 · · · · · · · · · 0 ∗ · · · · · · ∗
0 · · · · · · · · · 0 ∗ · · · · · · ∗







Now post multiplying by v−1 subtracts the first column from the second so

the Zkw
(k−3)v−1 has form
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1 1

1 1

.

.

.

.

.

.

1 1

1 1

1 1

1 1

1







−1 · · · · · · −1 −1

−1 · · · · · · −1

.

.

.

−1 −1

−1







0 0 0 ∗ · · · · · · ∗
0 0 0 ∗ · · · · · · ∗
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 ∗ · · · · · · ∗
0 0 0 ∗ · · · · · · ∗







0 · · · · · · · · · 0 ∗ · · · · · · ∗
0 · · · · · · · · · 0 ∗ · · · · · · ∗
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 · · · · · · · · · 0 ∗ · · · · · · ∗
0 · · · · · · · · · 0 ∗ · · · · · · ∗







Post multiplying by w−1 gives us
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1 1 1

1 1 1

.

.

.

.

.

.

.

.

.

1 1 1

1 1 1

1 1

1 1

1







−1 · · · −1 −1

−1 · · · −1

.

.

.

−1







0 0 0 0 ∗ · · · · · · ∗
0 0 0 0 ∗ · · · · · · ∗
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 0 ∗ · · · · · · ∗
0 0 0 0 ∗ · · · · · · ∗







0 · · · · · · · · · 0 ∗ · · · · · · ∗
0 · · · · · · · · · 0 ∗ · · · · · · ∗
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 · · · · · · · · · 0 ∗ · · · · · · ∗
0 · · · · · · · · · 0 ∗ · · · · · · ∗







.

Now post multiplication by v−1 gives us
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1 1

1 1

.

.

.

.

.

.

1 1

1 1

1 1

1 1

1







−1 · · · −1 −1

−1 · · · −1

.

.

.

−1







0 0 0 0 ∗ · · · · · · ∗
0 0 0 0 ∗ · · · · · · ∗
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 0 ∗ · · · · · · ∗
0 0 0 0 ∗ · · · · · · ∗







0 · · · · · · · · · 0 ∗ · · · · · · ∗
0 · · · · · · · · · 0 ∗ · · · · · · ∗
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 · · · · · · · · · 0 ∗ · · · · · · ∗
0 · · · · · · · · · 0 ∗ · · · · · · ∗







Continuing to repeatedly post multiply by w−1 and v−1 we eventually have

Y ′
k = Z ′

kw
(k−3)(v−1w−1)(k−3)v−1

= (vw)k−2vw−(k−2)w(k−3)(v−1w−1)(k−3)v−1

= (vw)k−2vw−1(v−1w−1)(k−3)v−1.

Hence Y ′
k has length of at most 4k.

Pre-multiplying Y ′
k by w−1 performs the permutation (1, n+1, n+2, ...2n, n, n−

1, ...2) on the rows of Y ′
k and multiplies n + 1th row by -1. This gives us the
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following matrix.







1 1

1 1

. . .
.
.
.

1 1

1 1

1

. . .

1







0 0 · · · · · · · · · 0 0

0 0 · · · · · · · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 · · · · · · · · · 0 0

0 0 · · · · · · · · · 0 0

∗ ∗ · · · · · · · · · ∗ ∗







−1 0 · · · · · · 0 −1

. . .







0 0 · · · · · · · · · 0 0

∗ ∗ · · · · · · · · · ∗ ∗
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

∗ ∗ · · · · · · · · · ∗ ∗
∗ ∗ · · · · · · · · · ∗ ∗
∗ ∗ · · · · · · · · · ∗ ∗







Now pre-multiplying by v−1 subtracts the second row from the first and adds

the 2n− 1th row to the 2nth. So we have
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1 −1 0

1 1

. . .
.
.
.

1 1

1 1

1

. . .

1







0 0 · · · · · · · · · 0 0

0 0 · · · · · · · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 · · · · · · · · · 0 0

0 0 · · · · · · · · · 0 0

∗ ∗ · · · · · · · · · ∗ ∗







−1 0 · · · · · · 0 −1

. . .







0 0 · · · · · · · · · 0 0

∗ ∗ · · · · · · · · · ∗ ∗
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

∗ ∗ · · · · · · · · · ∗ ∗
∗ ∗ · · · · · · · · · ∗ ∗
∗ ∗ · · · · · · · · · ∗ ∗







Pre-multiplying by w−1 again we get
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1 1

. . .
.
.
.

1 1

1

1

1

. . .

1







0 0 · · · · · · · · · 0 0

0 0 · · · · · · · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 · · · · · · · · · 0 0

0 0 · · · · · · · · · 0 0

∗ ∗ · · · · · · · · · ∗ ∗
∗ ∗ · · · · · · · · · ∗ ∗







−1 1

−1 0 · · · · · · .0. −1

. . .







0 0 · · · · · · · · · 0 0

0 0 · · · · · · · · · 0 0

∗ ∗ · · · · · · · · · ∗ ∗
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

∗ ∗ · · · · · · · · · ∗ ∗
∗ ∗ · · · · · · · · · ∗ ∗







By continuing to pre-multiply by v−1w−1 and then post multiplying by wk−3

we end up with the matrix
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1 0 1

1 −1

. . .
. . .

1 −1

1 0

. . .
. . .

1 0

1




0

0




1 0 1

1 −1

. . .
. . .

1 −1

1 0

. . .
. . .

1 0

1




−T J




We need to remove the −1 entries from the top-left matrix. To do this we

first post multiply by w to move our first unwanted entry into the second

column. Then we post multiply by v. This adds the first column to the second

column, which eliminates the -1 entry. By multiplying by wv repeatedly, we

end up eliminating the unwanted −1s. Now multiplying by w−(k−2) we have

the matrix F1,k.

So our matrix F1,k may be written as wk−2(v−1w−1)k−2Y ′
k(wv)k−3wk−3. So

lS′(F1,k) ≤ lS′(Y
′
k) + 4k < 10k.

Corollary 5.2.2: Suppose i 6= j and i, j ≤ n. Then lS′(Fi,j) < 12n.
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Proof. First suppose i < j. We have wFa,bw
−1 = Fa+1,b+1. Hence Fi,j can

be obtained by conjugating a matrix of form F1,k by w up to n − k times

and so lS′(Fi,j) < 10k + 2(n − k) = 8k + 2n ≤ 10n. Finally observe that

Fj,i = wnFi,jw
−n.

5.3 Construction of Long Root Elements

Recall that the matrix Ei,j is the matrix I + ei,j. The matrices Ei,2n−i+1 for

1 ≤ i ≤ 2n are long root elements in G.

Lemma 5.3.1: lS′((E1,2n)2) < 10n

Proof. We have

(vw)n−1v(w−1v−1)n−1 = I +
2n−1∑
i=n+1

(e1,i) +
n∑

i=2

(ei,2n) + 2e1,2n =

E−2
1,2n +

2n−1∑
i=n+1

(e1,i) +
n∑

i=2

(ei,2n).

This matrix has the following form.
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1

1

. . .

1







1 · · · 1 2

1

.

.

.

1




0




1

1

. . .

1







We wish to remove the entries of 1 in the top right quadrant. Pre-multiplying

by w(n−1)(v−1w−1)n−1 leaves us with the matrix







1

1 1

. . .
. . .

1 1

1

1







0 · · · 0 2

... 0

...
...

0 · · · 0




0




1

1 1

. . .
. . .

1 1

1

1




−TJ




Now we need to remove the entries above the diagonal. We achieve this by

post multiplying by w(vw)n−3vw−(n−2).

So we have (E1,2n)2 = w(n−1)(v−1w−1)n−1(vw)n−1v(w−1v−1)n−1w(vw)n−3vw−(n−2).

Hence lS′((E
2
1,2n)) ≤ 10n.
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Lemma 5.3.2: Suppose q ∈ Fp. Then lS(Eq
1,2n) < 10pn. For 1 < i ≤ n we

have lS(Eq
i,2n−i+1) < 12pn.

Proof. Suppose 1 < i ≤ n. We have w(i−1)(E2
1,2n)w−(i−1) = E−2

i,2n−i+1. Hence

lS(E−2
i,2n−i+1) < 12n.

Now observe that, since p is odd, for 1 ≤ i ≤ n, E−2
i,2n generates the group

{Eq
i,2n|q ∈ F∗p}.

5.4 Construction of N

Define ri to be the matrix in G sending ei to fi and −fi to ei. So ri has entries

of 1 in positions (k, k) for k 6= i, 2n−i+1, an entry of 1 in position (i, 2n−i+1)

and an entry of -1 in position (2n− i + 1, i). Let R = 〈r1, r2, ..., rn〉.

Define H to be the group








M 0

0 M−TJ


 | M is a monomial in GLn(p)





.

An arbitrary matrix in N may be written as the product of some h ∈ H and

at most n of the ri. Also, each element of H is the product of a diagonal

matrix with a matrix of form
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P ′ =




P 0

0 (P−TJ)




where P is a permutation matrix in GLn(p). Hence, to construct N we need

to work out the maximum possible lengths of each of the ri, each diagonal

matrix in H and each matrix of form P ′.

We shall now construct each ri from the long roots of G. Note that pre-

multiplying a matrix by Ei,j adds the ith column to the jth column. Post

multiplying a matrix by Ei,j adds the jth row to the ith row.

Lemma 5.4.1: lS′(ri) < 32pn

Proof. From the discussion above we see

E1,2nE
−1
2n,1 = E1,2n




1

1

. . .

−1 1




=




0 1

1

. . .

−1 1




.

Post multiplying this matrix by E−1
1,2n subtracts the 1st row from the 2nth

row and so r1 = E1,2nE−1
2n,1E

−1
1,2n.
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By 5.3.2, lS′(E1,2n) ≤ 10np. Also we have E2n,1 = wnE1,2nw
−n and so

lS′(E2n,1) < 2n + 10np ≤ 11np.

Hence the length of r1 is less than 31pn. Finally observe that wr1w
−1 = rn

and if 2 < j ≤ n, then wrjw
−1 = rj−1.

Now we construct the diagonal matrices in H. Let a ∈ F∗p. We’ll first construct

diagonal matrices of form Da where Da has entry a in rows 1 and 2n − 1,

entry a−1 in rows 2 and 2n and ones along the rest of the diagonal. That is

Da =




a

a−1

1
. . .

1

a

a−1




.

Define si,j to be the matrix that sends ej to ei, ei to −ej, fi to −fj, and fj

to fi. So, in the notation of the previous section,

si,j =




ti,j 0

0 t−TJ
i,j


 .
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Lemma 5.4.2: lS′(si,j) < 32n.

Proof. Observe that

Fi,jF
−1
j,i Fi,j =




Ei,j 0

0 E−TJ
i,j







E−1
j,i 0

0 ETJ
j,i







Ei,j 0

0 E−TJ
i,j


 =




Ei,jE
−1
j,i Ei,j 0

0 (Ei,jE
−1
j,i Ei,j)

−TJ


 .

Looking back to the proof of 3.2.5 we see that Ei,jE
−1
j,i Ei,j = ti,j and so the

above matrix is precisely si,j. Now apply 5.2.2.

Let a ∈ F∗p and define qa to be the matrix in G that sends e1 to ae1 and f1

to a−1f1. So

qa =




a

1

. . .

1

a−1




.
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Lemma 5.4.3: lS′(qa) ≤ 64np

Proof. Since E−2
2n,1 = wnE−2

1,2nw−n, by applying 5.3.2 we have lS′(E
−2
2n,1) <

12n. Hence lS′(E2n,1)
q < 12np for any q ∈ Fp.

Let a ∈ F∗p As discussed earlier, post-multiplication by E−a
1,2n adds the 1st

column of a matrix to its 2nth column −a times. Hence




1

. . .

. . .

a−1 1




E−a
1,2n =




1 −a

. . .

. . .

a−1 1− a(a−1)




=




1 −a

. . .

. . .

1

a−1 0




.

Now pre-multiplying this by E−a
1,2n will add the 2nth row to the 1st row −a

times. This leaves us with the matrix
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0 −a

1

. . .

. . .

1

a−1 0




.

To get qa we now just multiply by r1. Hence qa = (E−a
1,2n)(Ea−1

2n,1)(E
−a
1,2n)r1. So

by the previous paragraph, 5.3.2 and 5.4.1, lS′(qa) < 64np.

Lemma 5.4.4: lS′(Da) < 5np

Proof. We have

v−aF a−1

2,1 v−as1,2 =




x−a 0

0 (x−a)−TJ







Ea−1

2,1 0

0 (Ea−1

2,1 )−TJ







x−a 0

0 (x−a)−TJ







t1,2 0

0 t−TJ
1,2


 =




x−aEa−1

2,1 x−at1,2 0

0 (x−aEa−1

2,1 x−at1,2)
−TJ
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From 3.1.5 we see this is equal to




Ma 0

0 (Ma)
−TJ




which is precisely the matrix Da. Since s1,2 = vF−1
2,1 v we have lS′(s1,2) <

2n + 3. Now applying 5.2.2 we have lS′(Da) < 5np.

Lemma 5.4.5: Suppose D is a diagonal matrix in H. Then lS′(D) < 32pn2.

Proof.

Let D be the diagonal matrix in Sp2n(p) with entry di in row i for 1 ≤ i ≤ n.

Now



5. The Diameter of The Symplectic Group over Finite Fields with Prime Order 107

wDd−1
n

w−1 =




1

d−1
n

dn

1
. . .

1

d−1
n

dn

1




.

Multiplying by D(dndn−1)−1 gives the matrix




(dnd−1
n−1)

dn−1

dn

1
. . .

1

d−1
n

dn

1




.

By continuing to conjugate by w and multiplying by matrices of form Da we
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see that

w−(n−2)Ddn
−1wDdnd−1

n−1
wDdndn−1d−1

n−2
...wDdndn−1...d2

−1

=







(d2d3d4...dn)−1

d2

d3

. . .

dn−1

dn




0

0




dn

dn1

. . .

d3

d2

(d2d3d4...dn)−1







.

Now it is easy to see that multiplying by qd1d2d3...dn we are left with the matrix

D.

Using 5.4.4, and 5.4.3 we see lS′(D) < 5n2p+64pn. This is less than or equal

to 5n2p + 32n2p and so lS′(D) < 37n2p.

Lemma 5.4.6: lS′(H) ≤ 69n2p
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Proof. Suppose

h′ =




h 0

0 h−TJ


 ∈ H.

Then there exists a permutation π ∈ Sn such that the non-zero entry in row

i of h′ appears in the π(i)th column of h′. Now π−1 may be written as a

product of transpositions, τ1τ2...τk where k ≤ n. Suppose τi = (ai, bi) then

P ′ =




P 0

0 P−TJ


 =

k∏
i=1

sai,bi

is a monomial matrix where the ith row entry of P appears in the π−1(i)th

column. Applying 5.4.2 we have the length of this matrix is 32n2p.

Also h′P ′ is diagonal. So h′ = (P ′)−1D for some diagonal matrix, D and by

5.4.5, lS′(h
′) is less than 69n2p.

Corollary 5.4.7: lS′(N) ≤ 101n2p

Proof. This follows directly from 5.4.1, 5.4.6 and the discussion at the

beginning of the section.
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5.5 Construction of U

Each matrix in U is a product of a matrix of form

X =




X1 0

0 X2




where X1 and X2 are upper uni-triangular matrices in SLn(p), and a one of

form

M ′ =




I M

0 I


 .

Note that each entry (mi,j) of M has the property mi,j = mn−j+1,n−i+1.

We construct the matrices of form X in a similar way to the upper uni-

triangular matrices from Chapter 3.

Suppose X is as described above. Then as shown in 3.1.9,

X1 =

(
n−1∏
i=1

bi

)

where the bi are as described in Chapter 3. Hence

X ′ =

(
n−1∏
i=1

b′i

)
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where

b′i =




bi 0

0 b−TJ
i


 .

and we now need to work out the length of each of these matrices.

Lemma 5.5.1: lS′(X
′) < 5pn2.

Proof.

From the proof of 5.2.1 we know (vw)k−2v(w−1v−1)k−2 has form







1 1

1 1

. . .
.
.
.

1

. . .

. . .

1




0

0




1 1

1 1

. . .
.
.
.

1

. . .

. . .

1




−TJ




.

Pre-multiplying this matrix by
(
w(k−1)

∏k−1
m=1 w−1vwm,k−1

)
gives the matrix
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Q 0

0 Q−TJ




where

Q =




1 w1,k − 1 w1,k

1 w2,k − 1 w2,k

1
. . .

...

. . . . . .

1 wk−2,k − 1

1 wk−1,k

1

1

. . .

1




.

Finally post multiplying by
(∏k−2

m=1(v
1−wm,kw)

)
w(k−2) eliminates the entries

above the diagonal and leaves us with bk.
′ Hence lS′(b

′
k) < 10pk.

Now l′S(X ′) ≤ ∑n
i=1 lS′(b

′
k) ≤ 5n2p.

To construct M ′ we will need to use the long roots of G.

Define Mk to be the matrix
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Mk = I +
k∑

i=1

mi,n−k+1ei,n−k+1 +
n∑

j=n−k+1

mk,jek,j.

So Mk is the matrix







1

1

. . .

1

1







m1,n−k+1

m2,n−k+1

.

.

.

.

.

.

mk,n−k+1 · · · · · · mk,n




0




1

1

. . .

1

1







.

Now it is easy to see that

M1M2...Mn = M ′

We now need to construct the matrices Mk.
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Lemma 5.5.2: Fix 2 ≤ k ≤ n. Then lS′(Mk) ≤ 32pn + 11pk.

Proof. In this proof we only illustrate the top right quadrants of the matri-

ces. In each case the top left and bottom right quadrants will be the identity

and the bottom left will be the zero matrix.

Define L2 to be the matrix with top right quadrant




mk−1,2n−k+1

1 mk+1,2n−k+2




,

and L3 to be the matrix
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mk−2,2n−k+1

mk−1,2n−k+1

1 mk+1,2n−k+2 mk+1,2n−k+3




,

and so on. So Lj = I+ek,2n−k+1+
∑j−1

i=1 mk−(j−i),2n−k+1ei,2n−j+1+
∑2n

i=n+j+1 mk,2n−k+j−1ej,n+i.

Define r to be the smallest number such that Lr has some non-zero mi,j

entries. Now, for j < r, the matrices Lj are precisely the matrices Ej,2n−j+1.

We now construct Lr from Er,2n−r+1.

The matrix F
mk−r+1,2n−k+1−1
1,r Er,2n−r+1F

mk,2n

1,r is the matrix with top right quad-

rant
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mk−r+1,2n−k+1 m2
k−r+1,2n−k+1

1 mk−r+1,2n−k+1




.

If we remove the entry in the top right hand corner we will be left with Lr.

We achieve this by post-multiplying by E
−m2

k−r+1,2n−k+1

1,2n .

Now suppose j ≥ r. We can construct Lj+1 from Lj.

Set cj = min{c ∈ N|mk−c,n−k+1 6= 0.} So cj is the first row in Lj to have a

non zero entry in its top right quadrant.

We construct Lj+1 from Lj as follows. We first conjugate Lj by w. The

product wLjw
−1 has top right quadrant
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0

mk−(j−1),n−k+1

...

mk−2,n−k+1

mk−1,n−k+1

1 mk,n−k+2 · · · mk, 0




We now aim to place an entry of mk−j,n−k+1 in the top row. If mk−j,n−k+1 = 0

we are done.

If mk−j,n−k+1 6= 0, set cj = min{c ∈ N|mk−c,n−k+1 6= 0.}. So cj is the first

row in Lj to have a non zero entry in its top right quadrant. By repeatedly

adding the cjth row to the first row we get the required entry in the top row.

We do this by repeatedly pre-multiplying by E1,cj
. The matrix

(F1,cj
)
m−1

k−(j−cj),n−k+1
mk−j+1,k

wLjw
−1

has top right quadrant
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mk−j,n−k+1

mk−(j−1),n−k+1

...

mk−2,n−k+1

mk−1,n−k+1

1 mk,n−k+2 · · · mk, 0




Then we add the j − cjth column to the last column to place the right entry

in the last column. We have

Lj+1 = (F1,cj
)
m−1

k−(j−cj),n−k+1
mk−j+1,k

w−1Ljw(F1,j−cj
)−m−1

k−j,kmk−j+1,k

We have shown that to get Lk−1 from Lr we conjugate by w up to k times

and multiply by powers of the F1,cj
up to 2k times. Now the total length

contributed by the F1,cj
is at most

k−1∑
j=2

lS′(F1,cj
)p−1
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≤ (p− 1)
k−1∑
j=2

10cj

Now the total sum of the cj cannot be greater than k. Hence the contri-

bution of the F1,cj
is at most 10pk. Also, Lr contained E1,2n and a power

of E1,2n. By 5.3.1 and 5.3.2 these together give a contribution of less than

20np. Accounting for the number of times we conjugate by w, we have

lS′(Lk−1) ≤ 11pk + 20np.

Now Mk only differs from Lk−1 in the entry in position (k, 2n − k + 1).

To obtain Mk from Lk−1 we need to repeatedly add the kth column to the

(2n−k +1)th column until we have the correct entry in this position. Hence

Mk = Lk−1F
mk,n−k+1−1

k,2n−k+1 . Now we have lS′(Mk) ≤ 11pk + 20np + 12np =

32np + 11pk.

Corollary 5.5.3: lS′(M
′) < 38n2p

Proof. From the discussion earlier, M ′ = M1M2...Mn. Hence

lS′(M
′) ≤

n∑
i=1

lS′(Mi)

≤
n∑

i=1

(32pn + 11pk) < 38n2p.
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Now from the discussion at the beginning of this section we have

Corollary 5.5.4: lS′(U) ≤ 43n2p

Combining this with 5.4.7 we now have Theorem 1.1.5.

The diameter of G with respect to S ′ is at most 187n2p.

5.6 Another Bound for The Diameter

Finally, we prove Theorem 1.1.6.

Lemma 5.6.1: Let the matrix Da be as described in 5.4.4. Then lS′(Da) <

4mn log p, where m is the constant from 2.2.1.

Proof. Firstly observe that s2,1 = F1,2F
−1
2,1 F1,2. Also F2,1 = wnvw−n. So

lS′(F2,1) < 2n + 1 and lS(s2,1) ≤ 2n + 3 ≤ 4n. Now,the group generated by

s2,1 and F1,2 is equal to the group of matrices of form




A 0

0 A−TJ
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where A has non-zero determinant and has form

A =




a b

c d

1

. . .

1




.

From the result by Babai, Lubotzky and Kantor, 2.2.1, we also know that

the diameter of the group with respect to the set {s2,1, F1,2} is m log p where

m is a constant that does not depend on n or p. Since each matrix Da lies

in this group, the length of Da with respect to the set {F1,2, s2,1} is at most

m log p and so lS(Da) ≤ 4mn log p.

Lemma 5.6.2: Let D be a diagonal matrix in Sp(2n, p). Then lS′(D) <

133m′n2 log p where m′ = max{m, c}. Here m denotes the constant from

2.2.1 and c is the constant from 2.2.3.

Proof. Recall that from 5.3.1 we have lS′((E1,2n)2) < 10n and from 5.4.2 we

have lS′(s2n,1) ≤ 32n.

Now using 2.2.3 we see that the set T = {(E1,2n)2, (E2n,1)
2} generates the

group of matrices with form
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a b

1

. . .

1

c d




in G and this group of matrices has diameter c log p with respect to T .

Hence lT ((E1,2n)q) ≤ m′ log p, where m′ = max{m, c}, and so lS′((E1,2n)q) ≤
32m′n log p. Similarly each lS′((E2n,1)

a) and lS′(r1)
a (where the ri are the

matrices constructed in 5.4.1) are each bounded above by 32m′n log p for

each a ∈ Fp.

Since qa = E1,2nE
−1
2n,1E1,2n(r1)

a we have lS′(qa) < 128mn log p.

As in 5.4.5, we can write D as the product of n − 1 of the Da, one matrix

of form qa and 2n elements of S ′. Hence we have lS′(D) < 4m′n2 log p +

128m′n log p + 2n. Since n ≥ 2 we can bound this above by 133m′n2 log p.

Lemma 5.6.3: lS′(N) < 288m′n2 log p

Proof. Any matrix in H can be written as P−1D where D is diagonal

and P is as described in 5.4.6 . Now P is a product of n of the si,j and

has length at most 32n2. So, applying 5.6.2 any matrix in H has length

less than 165m′n2 log p. Any matrix in N is the product of a matrix in H
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with at most n of the ri, which have length of at most 128′mn log p. Hence

lS′(N) < 288m′n2 log p.

Lemma 5.6.4: Suppose X ′ is as described in 5.5.1. Then lS′(X
′) < 32n3 log p.

Proof. In the proof of 5.5.1 we saw that the matrix X ′ could be written as

a product of less than n2 of the matrices of form vq and w. where q ∈ Fp.

Since each matrix vq has length of at most 32m′n log p, the length of X ′ is

bounded above by 32n3 log p.

Lemma 5.6.5: In the notation of 5.5.2, lS(Mk) < 129m′nk log p+2n+96m′n log p.

Proof. Let a ∈ F∗p. By copying the proof of 5.2.1, we can see that

(F1,k)
q = w(k−2)((vq)−1w−1)k−2(vaw)k−1w−1(w(vq)−1)k−2(w−1(vq))k−3wk−3.

Since lS′(v
q) < 32m′n log p, we have lS′(F1,k) < 129mnk log p.

Recall that the matrix Lk−1 is the product of a number of matrices of form

F1,c, 2n of the matrix w, a power of E1,2n and a power of E2n,1.

The total length contributed by the F1,c is 129mnk log p. Also lS′(E
q
1,2n) and

lS′(E2n,1)
q have length at most 32m′n log p. Hence lS′(Lk−1) < 129m′nk log p+

2n + 64m′n log p.
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Now Mk = Lk−1F
mk,n−k+1−1

k,2n−k+1 . Now lS′(Fi,j) < 12n by 5.2.2. By a a similar

argument to that in 5.6.1 we see that Fi,j has length of at most m′ log p with

respect to the set {Fi,j, sj,i}. Hence lS′(Fk,2n−k+1)
m′

k,n−k+1−1 < 32m′n log p.

This gives us that lS′(Mk) < 129m′nk log p + 2n + 96m′n log p.

Corollary 5.6.6: lS(M) < 163m′n3 log p.

Proof. Set M1 = I + m1,2nE1,2n. Then

lS(M) =
n∑

k=1

lS(Mk)

<

n∑

k=1

129nck log p + 2n + 96m′n log p

< 65n3m′k log p + 2n2 + 96m′n2 log p

< 163m′n3 log p

Now we may deduce 1.1.6 from the previous corollary, 5.6.4 and 5.6.3.



6. USING COMPARISON TO DETERMINE A MIXING

TIME OF THE SYMPLECTIC GROUP

6.1

In this chapter we prove Theorem 1.1.6. We establish an upper bound on

the mixing time of G = Sp2n(p) given by a random walk with respect to the

uniform distribution on the set S ′ = {I, v±1, w±1}, described in Chapter 5.

We call this probability distribution, Q, so Q is given by

Q(g) =





1
5

g = v, w, v−1, w−1 or I

0 otherwise.

As in Chapter 4, we will bound the mixing time of G with respect to this

random walk by bounding the distance between Qk and U , the uniform

distribution on G. To do this we will need to use 2.4.1.

To use 2.4.1 we’ll need to bound the eigenvalues of the matrix associated
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with Q. To do this, we will use comparison with the random walk given by

the uniform distribution on the set of short root elements in Sp2n(p).

Let Q̃ be the uniform distribution on the set of short root elements in G.

Then Q̃ has corresponding matrix M̃ with eigenvalues π̃i .

To bound the eigenvalues π̃i we’ll use 2.4.3 and 2.4.4. We first determine a

suitable value of A in 2.4.4. Let T be the set of short root elements in G.

Note that, if t ∈ T, then N(s, t) and |t| are both bounded above by lS′(G),

which was shown to be less than Kn3 log p for some constant K in 1.1.6.

A = maxs∈S′
1

Q(s)

∑
g∈G |g|N(s, g)Q̃(g)

≤ 5
∑

t∈T (Kn3 log p)2Q̃(t).

= 5
∑

t∈T (K2)n6(logp)2Q̃(t)

= K2n6 log2 p.

So, using 2.4.4, π1 is bounded above by 1− π̃1

K2n6(log p)2
.

As in Chapter 4, we can establish a bound on π̃1 with the following result

using 2.5.2. Again, since the support of Q̃ is a single conjugacy class we

know, from 2.5.1, that the eigenvalues of M̃ are the character ratios χρ(t)

χρ(1)
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where ρ is an irreducible representation of G and t is a short root element in

G.

Theorem 2.5.2 bounds the absolute values of these above by 19
20

.

Now we have |χ(x)|
|χ(1)

≤ 19
20

and so π̃i ≤ 19
20

.

Now

πi ≤ 1− 1− π̃i

A
≤ 1− 1− 19

20

A
= 1− 1

20A

Since 1
20A

≥ 1
20K2n6(log p)2

, we have π1 ≤ 1− 1
20K2n6(log p)2

.

By using 2.4.2 we now can bound −π|G|−1 above by 3
5

which gives us that

the largest eigenvalue, πmax, is bounded above by 1 − 1
20K2n6(log p)2

. We are

now ready to prove 1.4.3.

Proof. Let K ′ = 20K2. Using 2.4.1 we have

4||Qk − U || ≤ |G|π2k
1 .

≤ pn2

(
1− 1

K ′n6(log p)2

)2k
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≤ exp

(
n2 log p− 2k

K ′n6(log p)2

)

= exp

(
K ′n8(log p)3 − 2k

K ′n6(log p)2

)
.

Hence the mixing time of Sp2n(p) is of order n8(log p)3.
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